If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+255
We move all terms to the left:
0-(-16t^2+255)=0
We add all the numbers together, and all the variables
-(-16t^2+255)=0
We get rid of parentheses
16t^2-255=0
a = 16; b = 0; c = -255;
Δ = b2-4ac
Δ = 02-4·16·(-255)
Δ = 16320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16320}=\sqrt{64*255}=\sqrt{64}*\sqrt{255}=8\sqrt{255}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{255}}{2*16}=\frac{0-8\sqrt{255}}{32} =-\frac{8\sqrt{255}}{32} =-\frac{\sqrt{255}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{255}}{2*16}=\frac{0+8\sqrt{255}}{32} =\frac{8\sqrt{255}}{32} =\frac{\sqrt{255}}{4} $
| f(3)=-3-4 | | 12y+4y-14y-y=14 | | (3/(x+12))(-4/(x-12))=(3x/(x^2-144)) | | -5/9x+43=-67 | | 7x+12=3(5x-12x) | | 7/2x+12+4=-8/x+6 | | (x+5)-2=x-1 | | 3(x+2)−10=4x−6+x | | 8^3x=32768 | | 64=15/4(2x-2/3)-11/4 | | −15x=−5(3x+7) | | 25v=156 | | x3-3x2+2x=0 | | 4^(1-3x)=3^(x) | | 5=1+4n | | -3-4=2-3(n+1 | | x+3(-5/7)=-1 | | D=45.2t | | 8x-4x+9=-21 | | 5x-3=12x=11 | | 9x2+3=21 | | m/8=256 | | v/5-12=8 | | 4•4=4(s+2) | | 6x+4=12x-2 | | –3(q–4)+15=–5(q–7)–10 | | 92(p+5)=644 | | 8n-3=2+3(n+8) | | 0.25x9.6= | | 5n-7n+3=-7 | | 3x-5(2x+1)=9 | | 5/7(k+5=-7 |